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Abstract

The objective of this research is to develop a prediction code for the Air Force 

Research Laboratory Propulsion Directorate that can accurately determine the gross 

thrust coefficient for a user defined non-axisymmetric two-dimensional converging 

diverging nozzle.  The code includes the effects of friction, angularity, and expansion 

losses on nozzle efficiency.  To demonstrate the prediction method, the generated 

computational results were compared to experimental data, as well as computational 

results from other existing nozzle performance codes, for a number of different nozzle 

geometries.  The nozzle internal performance prediction code showed excellent 

agreement with experimental data in predicting the gross thrust performance for all 

nozzle geometries considered.  It was shown, however, that when the experimental data 

showed evidence of flow separation, a flow phenomenon this code is unable to predict, 

the code results underpredicted the experimental by up to 10%.  



v

AFIT/GAE/ENY/06-03

For My Family
Thanks for all your Encouragement and Support



vi

Acknowledgments

I would like to express my sincere gratitude to my faculty advisor, Dr. Paul King, 

for his guidance and support throughout the course of this thesis effort.  The insight and 

experience was, without doubt, appreciated.  I would also like to convey my thankfulness 

to my sponsor, Alex Giese, from the Air Force Research Laboratory Propulsion 

Directorate for the support provided to me in this endeavor.

Angela M. Geatz



vii

Table of Contents

Page
Abstract  ................................................................................................................................................ iv

Dedication ................................................................................................................................................v

Acknowledgements ................................................................................................................................ vi

Table of Contents  ................................................................................................................................ vii

List of Figures ..................................................................................................................................... viii

List of Tables  ........................................................................................................................................ xi

List of Symbols  ................................................................................................................................... xii

 I.  Introduction ........................................................................................................................................1

       Chapter Summaries ...........................................................................................................................3
  
  II. Background........................................................................................................................................4

       One Dimensional Mass Flow Relations ............................................................................................4
       Coefficients of Efficiency..................................................................................................................6
       
  III. Methodology ..................................................................................................................................17

        Nozzle Geometry............................................................................................................................17
        Ideal Mass Model ...........................................................................................................................18
        Discharge Coefficient .....................................................................................................................19
        Velocity Coefficient .......................................................................................................................31
        Angularity Coefficient ....................................................................................................................32
        Gross Thrust Coefficient ................................................................................................................34

VI. Results and Analysis ........................................................................................................................35

        The Experiment of Mason, Putnam, and Re ...................................................................................35
        The Experiment of Berrier and Re..................................................................................................52
        The Experiment of Hunter..............................................................................................................56
        The Experiment of Capone and Berrier ..........................................................................................60

V.  Conclusions and Recommendations .................................................................................................65

Appendix A: Preliminary Results...........................................................................................................67

Appendix B: Method of Characteristics Comparison.............................................................................94

Appendix C: Program User’s Guide.......................................................................................................96

References ............................................................................................................................................100

Vita .......................................................................................................................................................103



viii

List of Figures

  Figure Page

  2.1 Baseline Gross Thrust Coefficient for a Converging Diverging Nozzle ..........................................8

  2.2 Nozzle Discharge Coefficient versus NPR for a Converging Diverging Nozzle ...........................11

  2.3 Velocity Coefficient versus Area Ratio for a Converging Diverging Nozzle.................................13

  2.4 Local Angularity Coefficient for a Converging Diverging Nozzle ................................................14

  2.5 Convergent Divergent Nozzle Angularity Coefficient ...................................................................15

  3.1 Non-Axisymmetric Two-Dimensional Converging Diverging Nozzle Geometry .........................17

  4.1 Nozzle Geometry for Configurations A1 and A2 ...........................................................................36

  4.2 Experimental and Computational Cfg Results for Configuration A1 ..............................................38
  
  4.3 Experimental and Computational Cfg Results for Configuration A2 ..............................................39

  4.4 Cline’s Theory Comparison for Nozzle A1....................................................................................41

  4.5 Cline’s Theory Comparison for Nozzle A2....................................................................................42

  4.6 Nozzle Geometry for Configurations B1, B2 and B3.....................................................................43

  4.7 Experimental and Computational Cfg Results for Configuration B1 ..............................................45

  4.8 Experimental and Computational Cfg Results for Configuration B2 ..............................................46

  4.9 Experimental and Computational Cfg Results for Configuration B3 ..............................................47

  4.10 The Effect of Separation on Thrust Performance .........................................................................48

  4.11 Cline’s Theory Comparison for Nozzle B1 ..................................................................................49

  4.12 Cline’s Theory Comparison for Nozzle B2 ..................................................................................50

  4.13 Cline’s Theory Comparison for Nozzle B3 ..................................................................................51

  4.14 Nozzle Geometry for the Nozzle of Berrier and Re .....................................................................53

  4.15 Experimental and Computational Cfg Results for the Nozzle of Berrier and Re ..........................54

  4.16 Hunter’s Theory Comparison for the Nozzle of Berrier and Re...................................................56

  4.17 Nozzle Geometry for the Nozzle of Hunter..................................................................................57

  4.18 Experimental and Computational Cfg Results for the Nozzle of Hunter.......................................58



ix

   Figure                                                                                                                                                 Page

  4.19 Hunter’s Theory Comparison for the Nozzle of Hunter ...............................................................60
  
  4.20 Nozzle Geometry for the Nozzle of Capone and Berrier..............................................................61
  
  4.21 Experimental and Computational Cfg Results for the Nozzle of Capone and Berrier...................62

  4.22 Hunter’s Theory Comparison for the Nozzle of Capone and Berrier ...........................................64

  Appendix Figure                                                                                                                                Page

  A1 Nozzle Geometry for Configurations A1 and A2 ...........................................................................68

  A2 Experimental and Computational Cfg Results for Configuration A1 ..............................................69
  
  A3 Experimental and Computational Cfg Results for Configuration A2 ..............................................70

  A4 Nozzle Geometry for Configurations B1, B2 and B3.....................................................................71

  A5 Experimental and Computational Cfg Results for Configuration B1 ..............................................73

  A6 Experimental and Computational Cfg Results for Configuration B2 ..............................................74

  A7 Experimental and Computational Cfg Results for Configuration B3 ..............................................75

  A8 Nozzle Geometry for the Nozzle of Berrier and Re........................................................................77

  A9 Experimental and Computational Cfg Results for the Nozzle of Berrier and Re ............................78

  A10 Nozzle Geometry for the Nozzle of Hunter ..................................................................................79

  A11 Experimental and Computational Cfg Results for the Nozzle of Hunter .......................................80

  A12 Nozzle Geometry for the Nozzle of Capone and Berrier..............................................................81

  A13 Experimental and Computational Cfg Results for the Nozzle of Capone and Berrier...................82

  A14 Experimental and Adjusted Computational Cfg Results for Configuration A1.............................85

  A15 Experimental and Adjusted Computational Cfg Results for Configuration A2.............................86

  A16 Experimental and Adjusted Computational Cfg Results for Configuration B1 .............................87

  A17 Experimental and Adjusted Computational Cfg Results for Configuration B2 .............................88

  A18 Experimental and Adjusted Computational Cfg Results for Configuration B3 .............................89

  A19 Experimental and Adjusted Computational Cfg Results for the Nozzle of Berrier and Re ...........90

  A20 Experimental and Adjusted Computational Cfg Results for the Nozzle of Hunter........................91

  A21 Experimental and Adjusted Computational Cfg Results for the Nozzle of Capone and Berrier ...92

  



x

 Appendix C Figure                                                                                                                              Page

 C1 Non-Axisymmetric Two-Dimensional Converging Diverging Nozzle Geometry...........................97



xi

List of Tables

  Table Page

  3.1 Radius Ratio Results for Each Nozzle Configuration.....................................................................21

  4.1 Nozzle Design Parameters for Configurations A1 and A2 .............................................................37

  4.2 Nozzle Design Parameters for Configurations B1, B2 and B3.......................................................44

  

  Appendix A Table Page

  A1 Nozzle Design Parameters for Configurations A1 and A2 .............................................................68

  A2 Nozzle Design Parameters for Configurations B1, B2 and B3.......................................................72

  A3 Radius Ratio Results for Each Nozzle Configuration.....................................................................93

 Appendix B Table Page

 B1 MOC Subroutine Output..................................................................................................................94

 B2 Gas Dynamics MOC Textbook Results ...........................................................................................95



xii

List of Symbols 

Symbol

2D                       Two-Dimensional

CD                      Converging Diverging

NPR                    Nozzle Pressure Ratio

a                          Speed of sound

A                         Area

A*                                    Area at nozzle throat

CA                       Angularity coefficient

Cd                       Discharge coefficient

Cf                        Skin friction coefficient

Cfg                      Gross thrust coefficient

Cp                        Specific heat at constant pressure

CV                       Velocity coefficient

d, D                     Diameter

dp

dx
Pressure gradient

Fg                        Gross thrust

gc                         Coefficient of gravity

H                         Shape parameter

h                          Height

L                          Length

M                         Mach number

m                        Mass flow rate

mideal                   Ideal mass flow rate

P                          Pressure

P                          Perimeter

Pr                        Prandtl number



xiii

Q                        Volume flow rate

R                         Specific gas constant

Rc                        Radius of curvature

Re                       Reynolds number

Re *
D Modified Reynolds number

r                          Radius

T                         Temperature

V                         Velocity

                         Local flow angle

                         Secondary nozzle half angle

                         Pressure gradient parameter

Specific heat ratio

                         Boundary layer thickness

*                        Displacement thickness

                          Secondary nozzle half angle

                          Momentum thickness

Primary nozzle half angle

                          Thwaites parameter

                          Darcy friction factor

                          Dynamic viscosity

                          Mach angle

                          Density

                           Shear stress

                          Kinematic viscosity

Radius ratio

    



xiv

Subscripts

0                           Stagnation 

7                           Nozzle entrance station  

8                           Nozzle throat station

9                           Nozzle exit station

e, eff                     Effective

h                           Hydraulic   

i                            Ideal 

inv                        Inviscid

s                           isentropic

t                            Throat   

vis                        Viscous

w                          wall

Superscripts

*                           Conditions at throat assuming one dimensional flow







1

A PREDICTION CODE FOR THE THRUST PERFORMANCE OF   

TWO-DIMENSIONAL, NON-AXISYMMETRIC,              

CONVERGING-DIVERGING NOZZLES

1. Introduction

The exhaust nozzle is a very important component of the overall engine 

propulsion system.  The amount of thrust delivered by the engine is more sensitive to 

nozzle performance than to the performance of any other engine component.  For this 

reason, it is highly important to be able to predict the gross thrust efficiency for a given

nozzle geometry.

The efficiency of an engine nozzle, usually represented by the nozzle gross thrust 

coefficient (Cfg), is defined as the ratio of the actual nozzle gross thrust to the ideal 

available gross thrust.  Knowledge of the gross thrust coefficient provides a manner in 

which one can calculate the actual gross thrust produced by an engine at operating 

conditions of interest.  Losses occurring in the nozzle reduce the amount of actual nozzle 

gross thrust available, thus causing a reduction in nozzle efficiency.  Some causes of 

nozzle performance losses are

(1) Friction – Momentum loss due to wall friction in the nozzle,

(2) Angularity – Momentum loss due to nonaxial flow at the exit plane of the nozzle, 
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(3) Expansion – Loss due to the mismatch of the nozzle exit pressure with the ambient 

pressure,

(4) Leakage – losses caused by gas leakage out of the nozzle (inherent with variable area 

nozzles), and 

(5) Cooling air throttling loss1 – loss that occurs when the cooling flow is removed from 

the tailpipe liner, experiences a pressure drop due to the difference in pressure between 

the liner flow and the nozzle cavity pressure (the liner flow pressure level is considerably

higher than the nozzle cavity pressure), and is put back into the nozzle at a lower total 

pressure and thus lower available thrust.

The objective of this research is to develop a prediction code for the Air Force 

Research Laboratory Propulsion Directorate that can accurately determine the gross 

thrust coefficient for a user defined non-axisymmetric two-dimensional converging 

diverging nozzle.  The Propulsion Directorate is concerned primarily with the results for 

aircraft exhaust nozzles, so it is very important that the program can provide valid 

predictions for low to mid-range nozzle pressure ratios. 

For this study, only losses due to friction, angularity, and expansion are 

considered.  A comparison of the program results with published experimental data as 

well as computational results from other existing nozzle performance codes is presented 

for several cases and gives insight into the nozzle performance characteristics discussed 

herein. 

                                                
1 Some converging diverging nozzles feature a cooling slot at the nozzle throat in order to supply extra film 
cooling air for the secondary nozzle during reheat.  The cooling air is normally extracted from the tailpipe 
liner cooling flow (located upstream of, or at, the the primary nozzle hinge).
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1.1 Chapter Summaries

Chapter 2 of this document provides brief background descriptions of the one 

dimensional mass flow relations as well as the nozzle coefficients of efficiency including 

the gross thrust coefficient, discharge coefficient, velocity coefficient, and angularity 

coefficient.  

Chapter 3 defines the methodology of the nozzle performance prediction code.  

This chapter includes a section devoted to nozzle geometry definition, the ideal mass 

model, determination of the inviscid and viscous discharge coefficients, determination of 

the velocity coefficient, determination of the angularity coefficient, and determination of 

the nozzle gross thrust coefficient.  

Chapter 4 provides a comparison of the program results with published 

experimental data as well as computational results from other existing nozzle 

performance codes for several nozzle geometries.

Chapter 5 lists important conclusions and recommendations for future work.
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2. Background

One dimensional isentropic flow relations are considered as a starting point for 

the analysis of the internal flow within a given nozzle.  Many actual processes, such as 

flows in nozzles and diffusers, are ideally isentropic making the study of the isentropic 

flow of a perfect gas in the absence of work and body forces worthwhile.  The results 

obtained through the assumption of constant specific heat are useful even for large 

temperature changes as long as one uses appropriate average values of Cp and .     

2.1 One-Dimensional Compressible Mass Flow Relations [1]

For constant specific heat, the stagnation state energy equation can be written as

                                               
T

T

V

C Tp

0
2

1
2

                                                      (2.1)

or, with the definition of Mach number, as 

                                                        
T

T
M0 21

1

2
 


                                                  (2.2)

since C
R

p 


 1

.  For a perfect gas with constant specific heats, the stagnation 

temperature can be related to the stagnation pressure through the relation

                                                            
P

P

T

T
0 0

1












.                                                     (2.3)         

The substitution of Equation (2.2) into Equation (2.3), gives

                                                    
P

P
M0 2

1

1
1

2
 











.                                             (2.4)

From the perfect gas law and Equations (2.2) and (2.4),
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                                                   .
2

1
1

1

1

20








 






M                                              (2.5)

For low speed flow, M2<<1, one can see from Equation (2.5) that   0 .  Thus, 

though the flow is not strictly “incompressible”, it is of essentially constant density.  

The mass flow per unit area is represented by the equation

                                                                


.
m

A
V                                                           (2.8)

Using the identities M
V

A
  and  a RT   along with Equation (2.2), one may express 

the velocity as

                                                    V M
RT

M








0

21
1

2

.                                               (2.9)

Equation (2.9), along with equation (2.5), allows for the mass flow rate to be written as 

                                           

 
m

A

P M

RT M

























0

0 2

1

2 1

1

1
1

2







                                   (2.10)

For a given fluid (, R) and inlet state (P0, T0), one can rationalize that the mass 

flow per unit area is a maximum at M=1.  Labeling the properties of the flow at M=1 

with an asterisk2 results in the maximum flow per unit area being defined as 

                                                
 

.*

m

A

P

RT














0

0

1

2 12

1







                                      (2.11)

                                                
2 A* is the flow area corresponding to a Mach number equal to one.  In a CD nozzle, this condition occurs 
at the nozzle throat.
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Through the combination of Equation (2.10) with Equation (2.11), one ends with a very 

useful relation defining the ratio of the actual flow area, A, to the throat area, A*, as 

depicted in Equation (2.12).

                                         
 A

A M
M* 






















1 2

1
1

1

2
2

1

2 1







                                 (2.12)

For the present work, the mass flow model presented in Equation (2.11) will be 

referred to as the ideal mass flow, mideal .  This model provides a first order estimate of the 

actual mass flow through the nozzle.  Deviation from the ideal occurs when non-ideal 

flow mechanisms, such as viscous effects, are considered.  The deviation of actual or 

measured nozzle parameters from those determined using one dimensional ideal gas flow 

relations is expressed through the coefficients of efficiency.   

2.2 Coefficients of Efficiency – Cfg, Cd, CV, and CA

Two dimensionless parameters, typically used to measure the performance of 

exhaust nozzles, are the gross thrust coefficient, Cfg, and the flow coefficient, Cd.  The 

gross thrust coefficient represents nozzle efficiency and is defined as the ratio of the 

actual gross thrust to the ideal available gross thrust.  It is a parameter that includes losses 

due to friction, angularity, and expansion.  What follows is a brief description of the gross 

thrust coefficient and the loss coefficients contributing to it.  

2.2.1 Nozzle Efficiency - The Gross Thrust Coefficient

The gross thrust coefficient is a measure of nozzle efficiency defined as the ratio 

of actual nozzle gross thrust to ideal available gross thrust as shown in Equation (2.13) 

[1].
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                                                      C
F

Ffg

g actual

g ideal


,

,

                                                   (2.13)             

where the uninstalled gross thrust for a one-dimensional flow, Fg,actual, and the ideal gross 

thrust, Fg,ideal, are represented by Equations (2.14) and (2.15), respectively [1].

                                             F m
V

g
P Pg actual actual

c
, ,







  8

9
9 0                                    (2.14)

                                                       F m
V

gg ideal ideal
S

c
, ,







8                                              (2.15)

where  ,m actual8  is the actual mass flow rate through the nozzle throat, V9 is the nozzle exit 

velocity, P9 is the pressure at the nozzle exit, P0 is the ambient pressure,  ,m ideal8 is the ideal 

mass flow through the nozzle throat, VS is the isentropic or fully expanded exit velocity, 

and gc is the coefficient of gravity.  Thus, with knowledge of the gross thrust coefficient, 

one can determine the actual gross thrust produced by an engine using the expression

                                                      F C Fg actual fg g ideal, , .                                               (2.16)

 Employment of Equations (2.14) and (2.15) allows for the gross thrust coefficient 

to be written as [1]

                                  

 
C

F

F

m
V

g
P P A

m V

g

fg

g actual

g ideal

actual
c

ideal s

c

 







  









,

,

,

,




.

8
9

9 0 9

8

                           (2.17)

The quantity  P P A9 0 9 , shown in Equation (2.17), represents the loss of nozzle 

efficiency through expansion effects.  Nozzle efficiency can also be reduced by other 

types of nozzle losses including losses caused by friction - momentum loss due to wall 
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friction in the nozzle and those caused by angularity effects - momentum loss due to 

nonaxial flow at the exit plane of the nozzle.  Expansion losses, frictional losses, and 

losses due to angularity establish a baseline nozzle thrust coefficient curve as shown in 

Figure 2.1 for a typical converging diverging nozzle.  

Figure 2.1 Baseline gross thrust coefficient for a converging diverging nozzle [2].

Equation (2.17) can be modified to include the effects friction and angularity by 

redefining the gross thrust coefficient, in the manner of Oates [2], as shown in Equation 

(2.18).

                                     

 
C

C C m
V

g
P P A

m V

g

fg

V A actual

ideal

c
i

actual s

c









  













,

,

,

8

9

9 0 9

8

                            (2.18)



9

where CV is the velocity coefficient, CA is the angularity coefficient,  ,m actual8  is the actual 

mass flow rate supplied to the nozzle or  * , ,m C mactual d ideal8 8 8 , V9,ideal is the ideal velocity 

at the nozzle exit represented by Equation (2.19)3

                                      
 

V Rg T
P

Pideal c t
i

t i
9 8

9

9

1
2

1
1, ,




























 

                             (2.19)

P9i is the ideal static pressure at the nozzle exit and can be obtained using the isentropic 

flow relations4, A9 is the nozzle physical exit area, and Vs is the isentropic or fully 

expanded exit velocity defined as shown in Equation (2.20)

                                          
 

V Rg T
P

Ps c t
t



























8
0

8

1
2

1
1




 

.                                   (2.20)

When the thrust coefficient is at its peak, as shown in Figure 2.1, ideal expansion 

occurs where the ideal static exit pressure, P9i, is equal to the ambient pressure, P0, thus 

resulting inV Videal s9,  .  At this peak condition, the equation for the gross thrust 

coefficient reduces to 

                                               C C Cfg peak V A,                                                   (2.21)

At any other pressure ratio, the difference between Cfg,peak and Cfg is a result of expansion 

losses which are attributable to “off design” operation (underexpansion - P9>P0 and 

overexpansion - P9<P0).

                                                
3 In this equation, Pt,9i is the ideal stagnation pressure at the nozzle exit. The ideal stagnation pressure at the 
nozzle exit, Pt,9i , is equal to the stagnation pressure at the nozzle throat, Pt8.
4 P9i/Pt9i is obtained by determining the ratio of A9 (the physical exit area of the nozzle) to A8,actual (the 
nozzle throat physical area less the boundary layer thickness) and then using the isentropic flow relations to 
determine  P9i/Pt9i.  Pt,9i , is known to be equal to the stagnation pressure at the nozzle throat, Pt8.
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In reference to Equation (2.18), the velocity coefficient (CV) provides a means for 

expressing the effects of friction through the nozzle while the angularity coefficient (CA) 

quantifies the angularity losses.  In addition to these two loss coefficients, the quantity 

 P P Ai9 0 9  represents the loss of nozzle efficiency through expansion effects.  Due to 

the importance of each of these quantities to this analysis, a brief summary of each is 

provided.

2.2.2 The Discharge Coefficient

The discharge coefficient, Cd, (or flow coefficient, as it is sometimes called) is not 

a measure of efficiency but rather a parameter that sizes the nozzle to an engine.  It is 

defined as the ratio of the actual mass flow rate to the ideal mass flow rate as is shown in 

Equation (2.22) [3].  

                                                      C
m

md

actual

ideal
8

8

8





,

,

                                                    (2.22)

In this relation, the ideal mass flow through the nozzle throat is predicted using the one-

dimensional inviscid flow theory of Equation (2.11).  

It can be shown that the discharge coefficient is also exactly equal to the ratio of 

the actual one-dimensional flow area required to pass the total nozzle flow to the ideal 

nozzle throat area as follows [3]:

                                C
m

m

V A

V A

A

Ad
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ideal

actual

ideal

actual

ideal
8

8

8

8 8 8

8 8 8

8

8

  



,

,

,

,

,

,




                                   (2.23)

where8 is the density at the nozzle throat, V8 is the velocity of the flow through the 

nozzle throat, A8,actual is the physical nozzle throat area less the boundary layer thickness, 

and A8,ideal is the physical nozzle throat area.  
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Figure 2.2 depicts the variation of the discharge coefficient with nozzle pressure 

ratio for a converging diverging nozzle.  Note the behavior of the discharge coefficient as 

the nozzle pressure ratio drops below choking (for a specific heat ratio of 1.4, choking 

occurs near a NPR of 2).  This is a result of the venturi behavior5 of the convergent-

divergent nozzle.

Figure 2.2 Nozzle discharge coefficient versus pressure ratio for a C-D nozzle [2].

2.2.3 The Velocity Coefficient

The velocity coefficient, CV, is a representation of the effect of frictional loss in 

the boundary layer of the nozzle.  Due to the fact that this coefficient is related to friction, 

it is essentially a function of the length of the diverging section of the nozzle, which 

                                                

5 As a fluid passes through a pipe that narrows or widens, the velocity and pressure of the fluid vary. As the 
pipe narrows, the velocity increases and the pressure decreases.  As the pipe widens, the velocity decreases 
and the pressure increases.  For the case of the CD nozzle, as A/A* increases, Pt8/P0 also increases.  This 
causes a decrease in the discharge coefficient, Cd8.



12

depends on the nozzle area ratio, A9/A8, and the secondary nozzle half angle, .  It is 

defined as the ratio of the actual exit velocity to the ideal exit velocity as shown in 

Equation (2.24) [3].  

                                                 C
V

VV

actual

ideal

 9

9

,

,

                                                    (2.24)

where V9,actual is the actual velocity at the nozzle exit as shown in Equation (2.25) [3] and 

V9,ideal is the ideal velocity at the nozzle exit as shown in Equation (2.26) [3].
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In each of these expressions R is the specific gas constant, gc is the coefficient of gravity, 

Tt8 is the stagnation temperature at the nozzle throat,  is the specific heat ratio, P9 is the 

measured or physical pressure at the nozzle exit, P9,i is the ideal pressure at the nozzle 

exit based on 
A

A actual

9

8,

, Pt9 is the physical or measured stagnation pressure at the nozzle 

exit, and Pt9,i is the ideal stagnation pressure at the nozzle exit (Pt9,i = Pt8).  For each of the 

relations shown in Equation (2.25) and Equation (2.26), the ratios 
P

P
i

t i

9

9

and 
P

Pt

9

9

can be 

determined by employing the isentropic flow relations6.  

                                                
6 P9i/Pt9i is obtained by determining the ratio of A9 (the physical exit area of the nozzle) to A8,actual (the 
nozzle throat physical area less the boundary layer thickness) and then using the isentropic flow relations to 
determine  P9i/Pt9i.  P9/Pt9 is obtained by determining the ratio of A9 (the physical exit area of the nozzle) to 
A8,ideal (the nozzle throat physical area) and then using the isentropic flow relations to determine  P9/Pt9.
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Figure 2.3 presents the velocity coefficient as a function of the nozzle area ratio, 

A9/A8,ideal, and the secondary nozzle half angle, , for a converging diverging nozzle.  

One can see from Figure 2.3 that, for each nozzle secondary half angle, , the velocity 

coefficient decreases as A9/A8,ideal increases.  This is due to the fact that as  increases, 

the length of diverging portion of the nozzle decreases.  This causes an decrease in 

frictional effects and hence, an increase in the velocity coefficient, C
V

VV

actual

ideal

 9

9

,

,

.

A typical range for velocity coefficients is 0.992 to 0.997.

Figure 2.3 Velocity coefficient for a converging diverging nozzle [2].
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2.2.4 The Angularity Coefficient

The angularity coefficient, CA, represents the thrust loss resulting from the 

nonaxial exit of the exhaust gases from the nozzle as shown pictorially in Figure 2.4.

Figure 2.4 Local angularity coefficient for a 2D CD nozzle [2].

For a small element of flow, this coefficient simply becomes the cosine of the local flow 

exit angle, j, as shown in Equation (2.27) [2].

                                                     C
V

VA j

axial

j,

,
cos 9

9

                                              (2.27)

The local flow angle, j, is not a constant across the nozzle exit, however, but varies, 

ideally, from zero at the nozzle center line to  at the outer radius.  Thus, the overall 

nozzle angularity coefficient is the integral of cos j across the nozzle exit as shown in 

Equation (2.28) [2].  It must be noted that this equation for the angularity coefficient is 

based on the assumption of constant mass flow per unit area.  
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In real nozzle geometries, there is a slight loss in efficiency because the exit static 

pressure is not equal to ambient pressure across the entire nozzle exit area.  Thus, the 

angularity coefficient is adjusted to include this loss and results in the expression 

provided in Equation (2.29) [2].
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Note that the second term in this equation is the static pressure variation loss while the 

third term is the velocity variation loss.  Both of these losses are functions of nozzle 

geometry only.  The trends depicted in Figure 2.5 represent an angularity coefficient 

given by Equation (2.29). 
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Figure 2.5 Convergent divergent nozzle angularity coefficient [2].

  

    The dashed line region shown in Figure 2.5 represents nozzle geometries that are 

very short and most likely separated causing the analytical prediction to be invalid.

For nozzles with an area ratio below 1.1, the angularity coefficient usually falls 

within a range of 0.995 to 0.997 or higher.  However, for higher area ratio nozzles, the 

loss can be up to 2% such that CA is within the range 0.98 to 0.99. 
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3. Methodology – Nozzle Performance Prediction Code

A nozzle performance prediction code was developed to predict the thrust 

performance of a user defined non-axisymmetric two-dimensional converging diverging 

exhaust nozzle.  What follows is a brief description of the code methodology.

3.1 Nozzle Geometry

Before the performance analysis can begin, the user must define the nozzle 

geometry.  This program was designed to analyze nozzles characterized by smooth 

contoured throats, but it will be shown that this program may also be used to analyze 

nozzles characterized by sharp cornered throats.  Figure 3.1 depicts the nozzle geometry 

for which this analysis is valid.  

Figure 3.1 Non-axisymmetric two-dimensional converging diverging nozzle geometry
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In this illustration, station 7 represents the nozzle entrance, station 8 the nozzle 

throat, and station 9 the nozzle exit.  If the user chooses to analyze a nozzle with a sharp 

cornered throat, the radius of curvature is simply defined to be equal to zero.  Once the 

nozzle geometry has been defined, the program begins the performance analysis.  

3.2 Ideal Mass Model

After the nozzle geometry has been defined, the program user is asked to describe 

the gas at various locations throughout the nozzle.  Specifically, the user is asked for the 

molecular weight of the gas as well as the atmospheric temperature and pressure. A file 

that includes a temperature range, corresponding specific heat ratios (gammas), and 

corresponding dynamic viscosities has been set up for the gas in question. The current 

file is set up for air.  The user can modify this file if the gas of interest is not air.

   The ideal mass flow through the nozzle throat is then calculated using the one 

dimensional isentropic flow relation provided in Equation (2.11).  That relation is 

reproduced here corresponding to the conditions at the throat.
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                                      (3.1)

As stated before, boundary layer development causes a mass flow deviation from the 

ideal by decreasing the area through which the mass can flow.  The ratio of this decreased 

area to the ideal area, known as the discharge coefficient, is provided in Equation (3.2).
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                                    (3.2)

Thus, the actual mass flow through the nozzle throat can be determined using the 

expressions provided in Equations (3.3) and (3.4).
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                                                      * , ,m C mactual d ideal8 8 8                                                 (3.3)
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3.3 Discharge Coefficient, Cd8

As stated earlier, the discharge coefficient is defined as the ratio of the actual 

mass flow at the nozzle throat, m8 , to the ideal mass flow at the nozzle throat, m i8 .  The

ideal mass flow model given by Equation (3.1) provides a convenient first order estimate 

of the mass flow through the nozzle.  The ideal mass flow model can be used as a 

baseline C
m

md

actual

ideal
8

8

8

1 
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




,

,

from which to subtract non-ideal effects such as multi-

dimensional effects and viscous effects.  Consequently, the discharge coefficient can be 

expressed as

                                                   C C Cd d inv d vis  1  , ,                                              (3.5)

where Cd inv, is the reduction in Cd due to multi-dimensional7 effects and Cd vis, is the 

reduction in Cd due to viscous effects.  The change in Cd due to each non-ideal effect is 

represented mathematically by the following expressions:

                                                         C Cd vis d vis, , 1                                                   (3.6)

                                                     C Cd inv d inv, , . 1                                                  (3.7)

Substitution of these relations into Equation (3.5) yields Equation (3.8).

                                             C C Cd d inv d vis    1 1 1( ) ( ), ,                                        (3.8)

                                                
7 In this case, two-dimensional inviscid discharge effects are considered. 
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As can be seen in Equation (3.8), the analytic characterization of Cd becomes an exercise 

in determining a discharge coefficient for each non-ideal effect relative to the baseline 

estimation of Cd=1.  

Knowledge of the discharge coefficient and ideal mass flow through the nozzle 

throat,  ,m ideal8 , allow for the direct determination of the actual mass flow through the 

nozzle throat,  * , ,m C mactual d ideal8 8 8 .  The actual mass flow through the nozzle 

throat,  ,m actual8 , is necessary for the solution of the gross thrust coefficient equation as 

depicted in Equation (2.18).  

The remainder of this section is devoted to the presentation of previously 

developed methods for determining Cd,inv and Cd,vis.

3.3.1 Hall’s [4] Analytical Model for Determining the Inviscid Discharge Coefficient

Closed form analytical expressions for the inviscid discharge coefficient, Cd,inv, 

have been developed by several researchers – Stratford [4], Masure [5], and Hall [6].  

Among several works that have been published, the most widely used solution is credited 

to Hall [6] who solved the equation in axisymmetric coordinates by employing a series 

solution of four terms.  Hall’s [6] expression for the inviscid discharge coefficient is 

expressed as

                 Cd inv, ( )   



 





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1 1

1
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8 21
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552960
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             (3.9)

where 
R

R
t

c

, Rt is the throat radius, and Rc is the radius of curvature at the nozzle 

throat.  It should be mentioned that this series diverges for Ω greater than unity so that 
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solutions may be less accurate for Ω slightly greater than unity and invalid for values of 

Ω considerably greater than unity.

Preliminary tests on a number of nozzles showed that the analytical expression 

developed by Hall [6] for the inviscid discharge coefficient, Cd,inv, diverged for many of 

the nozzle geometries considered for analysis because the nozzle radius ratio,  
R

R
t

c

, 

was greater than unity.  Table 3.1 provides a list of the radius ratios for each nozzle 

configuration considered in this study.  As can be seen in Table 3.1, the radius ratio 

varies from values less than one to values much greater than one.

Table 3.1 Radius ratio data for each nozzle configuration.

Nozzle Configuration
Radius Ratio 

Rt/Rc

A1 2.831
A2 0.7026
B1 2.831
B2 0.7026
B3 0.7026

Hunter Case 2 1.2158
Hunter Case 3 1.216

Hunter Case 4 14680

To solve the problem of inviscid discharge coefficient divergence, two possible 

solutions were considered - the first being based on omitting the inviscid discharge 

coefficient from the overall discharge coefficient relation and relying solely on the 

discharge coefficient method of Tang and Fenn [7] (introduced in section 3.3.2) and the 

second being based on the inclusion of an inviscid discharge coefficient that would be a 

constant for every nozzle geometry considered.     
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 For the second solution method, inviscid discharge coefficient data was generated 

for nozzle radius ratios of 0.05 to 0.95.  The median value, over this radius ratio range, of 

0.9915 was selected for the inviscid discharge coefficient and inserted into the nozzle 

performance code as a constant for any radius ratio value considered.  

Preliminary computational results were generated for these two methods and 

compared to experimental results for each nozzle geometry considered in this analysis.  

These results are provided in the Appendix.  From this study, one can see that the plots 

provided in Appendix A provide evidence that omitting the inviscid discharge coefficient 

from the overall discharge coefficient relation provides computational results that 

continuously overpredict the experimental data.  The inclusion of a constant inviscid 

discharge coefficient of 0.9915, however, provides an excellent comparison to the

experimental data for a wide range of nozzle radius ratios.  For this reason, it was decided 

that the inviscid discharge coefficient would be included in the nozzle performance code 

as a constant of 0.9915 for any radius ratio value considered.  

3.3.2 Tang’s [7] Analytical Model for Determining the Viscous Discharge Coefficient

A number of researchers – Stratford [4], Tang and Fenn [7], and Geropp [8] -

have also examined the manner in with viscous effects influence the nozzle mass flow.  

As mentioned before, viscous effects retard the flow near the wall creating a boundary 

layer with a corresponding displacement thickness, *.  The displacement thickness 

decreases the actual area through which the mass can flow thus creating a decrease in 

mass flow.  Using the relation C
m

m
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, one can express the 

viscous discharge coefficient, as done by Johnson [9], as



23

                                                        C
dd vis,

*

 






1 2

2


                                               (3.10)

where * is the displacement thickness and d is the nozzle throat diameter.

An assortment of boundary layer methods has been developed to estimate the 

throat displacement thickness for nozzle flows.  The method considered here, is one 

developed separately by both Geropp [8] and Tang and Fenn [7].  Geropp [8] and Tang 

and Fenn8 [7] independently developed similarity solutions to predict the displacement 

thickness by utilizing the following assumptions:

     (1) perfect gas with a constant specific heat,

(2) external to the boundary layer the flow is one-dimensional  and inviscid,

(3) Prandtl number equal to unity,

(4) adiabatic nozzle wall,

(5) molecular viscosity has a linear dependence on temperature, 

(6) nozzle wall radius of curvature much larger than the boundary layer thickness, and

(7) pressure gradient parameter, , equal to infinity.

 The insertion of Tang’s and Fenn’s [7] expression for the displacement thickness 

into Equation (3.10) supplies the following expression for the viscous discharge 

coefficient.

                                                
8 The expression of Tang and Fenn, for the viscous discharge coefficient, is identical to Geropp’s with the 
exception that it includes an additional term that is inversely proportional to the Reynolds number.  
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D  is a modified Reynolds number defined as 
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,  is 

the density, u is the velocity, and  is the viscosity.  The subscript e indicates freestream 

values while the asterisk indicates conditions at the nozzle throat.  

For Reynolds numbers less than 1000, Tang’s and Fenn’s [7] computational 

viscous discharge coefficient underpredicts their experimental discharge coefficient9.  

Tang and Fenn [7] attempted to correct for this underprediction by modifying his 

expression to include the effects of non-unity Prandtl numbers.  This modification is 

represented through the modified Reynolds number as Re
Pr*
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Even after the correction for Prandtl number, there remains a consistent excess in the 

measured values of Cd for Reynolds numbers less than 1000.

Due to the overprediction of the discharge coefficient by the method of Tang and 

Fenn [7] for Reynolds numbers less than 1000, the method of Kuluva and Hosack [10] 

was considered for this low Reynolds number range.

                                                
9 Tang and Fenn [7] experimentally determined discharge coefficients for various gases (hydrogen, helium, 
nitrogen, and argon) over a Reynolds number range of 102 to 104.
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3.3.3 Kuluva’s Analytical Model for Determining the Viscous Discharge Coefficient

The following analytical model for discharge coefficient determination is courtesy 

of Kuluva and Hosack [10] who presented a simple formula for the calculation of the 

discharge coefficient in the throat Reynolds number range of 50 to 1000 for a wide range 

of nozzle geometries.  

In their approach, Kuluva and Hosack [10] write the discharge coefficient for 

flow through a nozzle as 

                                                      
 

C
R R

Rd vis

t t t

t
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*
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2

2 
                                             (3.12)

where Rt is the throat radius and t
* is the displacement thickness at the throat.  Thus, in 

order to determine the discharge coefficient at the nozzle throat, it is only necessary to 

calculate the displacement thickness at this location.

Kuluva and Hosack [10] theorized that because of the flow acceleration in a 

nozzle, the boundary layer and momentum thickness reach their minimum values at, or 

quite near, the nozzle throat and that this observation coupled with the knowledge of the 

axial change of Mach number would provide a simple means for calculating the 

displacement thickness.  Thus, in order to determine the discharge coefficient, the 

boundary layer equations would only need to be solved algebraically at the nozzle throat.  

The formulation of Kuluva’s and Hosack’s [10] boundary layer equations is based 

on the following assumptions:

(1) the displacement thickness is a minimum at the nozzle throat,

(2) curvature effects can be neglected (/r<<1),

(3) velocity slip effects at the wall can be neglected, and 
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(4) the flow is adiabatic.

These assumptions result in relations between the momentum thickness, boundary layer 

thickness, and boundary layer displacement thickness through which the following 

expression for the viscous discharge coefficient is determined.    
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where Rc is the throat radius of curvature, Rt is the nozzle throat radius, Re is the throat 

Reynolds number represented by Re
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, and f() is represented by Equation 

(3.14).  
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Kuluva’s and Hosack’s [10] theory was shown to correlate well with their 

experimental data10 for Reynolds numbers less than 1000.  

The method discussed in sections 3.3.1 is used to determine the inviscid discharge 

coefficient while the methods of sections 3.3.2 and 3.3.3 are used to determine the 

viscous discharge coefficient.  Due to the error resulting from Tang’s  and Fenn’s [7] 

expression for Reynolds numbers less than 1000, it was decided that Tang’s and Fenn’s 

[7] analytical model would be used to determine the viscous discharge coefficient for 

Reynolds numbers greater than 1000, and Kuluva’s and Hosack’s  [10] would be used for 

Reynolds numbers less than 1000.  

It is necessary to mention here that the methods of Hall [6], Tang and Fenn [7], 

and Kuluva and Hosack [10] are used for the analysis of nozzles with circular cross 

sections.  Thus, these methods were modified so that they could be used to analyze 

nozzles with cross-sectional shapes other than circular.  The idea behind the modification 

is the definition of a geometrical parameter that will take the place of the nozzle throat 

radius in Equations (3.9, 3.11, and 3.13) as well as in all Reynolds number 

representations.  

For the purpose of this analysis, this parameter will be defined as an effective 

diameter shown in Equation (3.17).

                                      D D
C

eff h

f Dh la ar


16

Re
min

                                         (3.17)

                                                
10 Kuluva and Hosack [10] conducted an experiment to determine the validity of their theory for discharge 
coefficient determination.  Measurements were taken, at throat Reynolds numbers less than 1000, for argon 
and nitrogen gases. 
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where D
A

Ph 
4

 is the hydraulic diameter, Cf is the skin friction coefficient or Fanning 

friction factor, and ReDh
huD





 is the Reynolds number based on the hydraulic 

diameter. The concept of an effective diameter was proposed and proven experimentally 

by O.C. Jones in tests on rectangular [11] and concentric angular ducts [12] and should 

work well for any squatty or blocky cross section.  

The hydraulic diameter concept is one that arose due to the failure of the Darcy 

friction factor definition for a noncircular duct.  The proposed definition of the Darcy 

friction factor,





8
2

w

u
, does not work for a non-circular duct because the wall shear 

stress, w, varies around the perimeter.  A partial remedy is to define a mean wall shear 

stress, as done in White [13], as 

                                                            w w

P

P
ds 

1

0

                                                   (3.18)

where ds is an element of arc length and P is the perimeter of the shape in question. 

If a slug of fluid passing through a duct is isolated and one assumes that there is no net 

momentum flux due to the fully developed flow, the net pressure and the wall shear force 

on the fluid can be equated as follows:

                                                         dx ds Adpw

P

   
0

                                                (3.19)

Or, from the definition of mean shear,

                                                           w

A

P

dp

dx
 





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

                                                  (3.20)
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This relation for mean shear stress is exactly analogous to the equation of shear stress for 

circular duct flow.  This analysis provides a definition for the hydraulic diameter of a 

non-circular duct, shown in Equation (3.21), as well as a redefined Darcy friction factor 

given in Equation (3.22).

                                               D
A

P

Area

Wetted Perimeterh  
4 4 *

                                      (3.21)

                                                                




8

2
w

u
                                                       (3.22)

In order to determine the mean shear stress given by Equation (3.20), one must 

have a method for evaluating the pressure gradient,
 dP

dx
.  Fortunately, there exists an 

enormous number of exact solutions for noncircular shapes as reviewed by Berker [14].  

The shapes of interest considered in this study are rectangular, square, and circular cross 

sections.  The velocity distribution and volume flow rate results for each are provided in 

Equations (3.23-3.28).

Rectangular Section:   a y a ,   b z b :
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Circular Section11: 
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Square Section:   a y a ,   b z b , a b
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For each of these equations, the knowledge of the flow rate through the nozzle 

throat allows for computation of the pressure gradient.  The mean shear stress can then be 

determined using Equation (3.20) followed by calculation of the Darcy friction factor 

                                                
11 It should be mentioned here that if the above analysis is done for a circular cross section, both the 
hydraulic diameter and the effective diameter will end up being exactly equal to the diameter of the circle 
as would be expected.  The equations for a circular cross section are provided here for completeness.



31

through Equation (3.22), the skin friction coefficient C f 

4

, and lastly the effective 

diameter through Equation (3.17).  Insertion of the effective radius (1/2 the effective 

diameter) into Equations (3.9), (3.11), and (3.13) allows for the direct determination of 

nozzle discharge coefficient for any specified cross sectional shape.

3.4 Velocity Coefficient, CV

To determine the velocity coefficient, the program uses the nozzle throat area and 

exit area, input by the user, to calculate an ideal area ratio,
A

A

A

C Ai
d

* |9
9

8








 , and actual 

area ratio, 
A

A

P

P

A

C A
t

t d
* |9

9

8

9

8















 .  Once the area ratios for both the actual and ideal cases 

have been determined, the corresponding Mach numbers and pressure ratios are found 

using the isentropic flow relations given in Equations (2.4) and (2.12).  From this, the 

program solves Equation (2.26) for the ideal exit velocity and Equation (2.25) for the 

actual exit velocity.
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In each of these expressions R is the specific gas constant, gc is the coefficient of gravity, 

Tt8 is the stagnation temperature at the nozzle throat,  is the specific heat ratio, P9 is the 

measured or physical pressure at the nozzle exit, P9,i is the ideal pressure at the nozzle 
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exit based on 
A

A actual

9

8,

, Pt9 is the physical or measured stagnation pressure at the nozzle 

exit, and Pt9,i is the ideal stagnation pressure at the nozzle exit (Pt9,i = Pt8).   For each of 

these relations, the ratios 
P

P
i

t i

9

9

and 
P

Pt

9

9

can be determined by employing the isentropic 

flow relations.  

The velocity coefficient, CV, is then determined by inserting the ideal and actual 

exit velocity results into Equation (3.29). 
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3.5 Angularity Coefficient, CA 

In order to determine the nozzle angularity coefficient, the program first has to 

determine the local flow angle of the exhaust gas leaving the nozzle.  As stated before, 

the local flow angle, j, is not a constant across the nozzle exit, but actually varies from 

zero at the nozzle center line to  at the outer radius.  The method of characteristics was 

included in the program for the purpose of determining the variance of the local flow 

angle at the nozzle exit.  

The method of characteristics is a classical technique used for the solution of 

inviscid supersonic and hypersonic flows, both internal and external.  For this analysis, an 

assumption of a two-dimensional, supersonic steady flow of a perfect gas with constant 

specific heats is made and satisfied by using an average specific heat ratio, 


 

average 




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8 9

2
, throughout the nozzle.  
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The analysis begins at the nozzle throat (station one), where the flow properties 

are known, and continues outward.  The flow geometry examined by the program is 

assumed symmetric across the nozzle centerline making it necessary to consider only half 

of the flow above or below the centerline.  The half of the flow under consideration is 

divided into a user defined number of equally spaced nodes, i, such that 1 is 0° at the 

centerline and i is the secondary nozzle half angle, .  At each node, there exist two 

characteristic lines, C1 and C2, defined as lines across which there exists a discontinuity 

in the velocity gradient.  The slopes of these lines are expressed in polar coordinates, as 

shown by John [15], as

                                                       
dy

dx
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tan( )                                                 (3.30)
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where  defines the flow direction and  is the Mach angle,  




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sin 1 1

M
.    

The intersection of two characteristic lines defines a new station of nodes at 

which new flow properties (Mach number, flow angle, etc.) are determined.  This process 

is continued until the end of the secondary nozzle has been reached.  The properties 

calculated at this point are the nozzle exit properties and thus provide the exit flow angle 

variation.  

Appendix B presents a comparison of the output provided by the method of 

characteristics subroutine to an example method of characteristics problem depicted in 

the textbook Gas Dynamics [15].  One can see, from a comparison of Table B1 with 
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Table B2 that the method of characteristics subroutine results compare extremely well 

with those results provided in Gas Dynamics [15].

Once the nozzle exit angle variation is known, the program calculates the 

angularity coefficient using Equation (2.28). 
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 Note that this equation is for a nozzle with a circular cross section.  If the user specifies a 

nozzle of square or rectangular cross section, an equivalent relation corresponding to the 

defined shape is used. 

It should be noted that this MOC model is applicable to two-dimensional nozzle 

geometries only.  However, this model could easily be expanded to include other nozzle 

geometries, particularly axisymmetric converging diverging nozzles.  Expansion of this 

prediction model to include axisymmetric converging diverging nozzles would only 

require modification to the current method of characteristics subroutine (from two 

dimensions to three dimensions).  

4.7 Gross Thrust Coefficient, Cfg 

When the nozzle loss coefficients have been determined, the program calculates 

the gross thrust coefficient, for the user specified operating conditions, using Equation 

(2.18). 
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This program was used to generate gross thrust coefficient data for a number of

different nozzle geometries.  A brief program user’s guide is provided Appendix C.

4. Results and Analysis

A number of researchers – Mason, Putnam, and Re [16], Berrier and Re [17], 

Hunter [18], and Cappone and Berrier [19] - have conducted experiments on a variety of 

nozzle geometries to understand the effect of various parameters on nozzle gross thrust 

coefficient.  In order to emphasize its capability, the results generated by the nozzle 

performance prediction code are compared to the experimental results of these 

researchers as well as to the computational results produced by existing codes developed 

by Hunter [20] and Cline [21].

4.1 The Experiment of Mason, Putnam, and Re [16]

Mason, Putnam, and Re [16] conducted an experiment to determine the effect of 

throat contouring on nozzle internal performance.  They tested five non-axisymmetric 

converging-diverging nozzles in the static test facility of the Langley 16 foot transonic 

tunnel and recorded internal performance data at nozzle pressure ratios up to 9.0.

For their experiment, two CD nozzles, A1 and B1, were used as baseline nozzle 

geometries.  These baseline geometries were modified by increasing the throat radius of 

curvature while holding all other geometric parameters constant except for the primary 

nozzle half angle, , and the secondary nozzle half angle, .  The modified nozzle 

geometries are labeled as A2, B2, and B3.  There are two main differences between the 

category A and B nozzles – (1) the expansion ratio of the category B nozzles is larger 
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than those of category A (1.8 compared to 1.09) and (2) the secondary nozzle half angle, 

, of the category B nozzles is larger than those of category A (10.85° and 11.24° 

compared to 1.21°).  The two baseline geometries as well as the modified geometries 

were tested and the data from each recorded.

4.1.1 Configuration A1 and A2

The nozzle geometry of A1 and A2 is shown in Figure 4.1. A table listing the 

design parameters for each configuration is provided in Table 4.1 as well.  Note that these 

two geometries differ through their radii of curvature and primary nozzle half angles.

Figure 4.1 Nozzle geometry for configurations A1 and A2 [16].
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Table 4.1 Nozzle design parameters for configurations A1 and A2 [16].
                                                                                                                                                        

Parameter A1 A2 Parameter A1 A2

Ae, cm2 30.29 30.29 lt, cm 5.78 5.78

At, cm2 27.81 27.81 l1, cm 5.54 4.74

Ae/At 1.09 1.09 l2, cm 0.24 1.04

he, cm 1.49 1.49 l3, cm 0.01 0.06

hi, cm 3.52 3.52 l4, cm 5.76 5.72

ht, cm 1.37 1.37 Md 1.35 1.35

h1, cm 1.41 1.57 NPRd 2.97 2.97

h2, cm 1.37 1.37 Rc, cm 0.68 2.74
l, cm 11.56 11.56 , degrees 20.84 22.33

le, cm 5.78 5.78 , degrees 1.21 1.21

The nozzle performance code was used to generate computational results for both 

configuration A1 and A2.  Figures 4.2 and 4.3 provide a comparison of the computational 

code results and the experimental results of Mason, Putnam, and Re [16] for 

configuration A1 and A2, respectively.
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Figure 4.2 Experimental and computational gross thrust coefficient results for nozzle 

configuration A1.
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Figure 4.3 Experimental and computational gross thrust coefficient results for nozzle 

configuration A2.

One can see in Figures 4.2 and 4.3 that the shapes of the computational and 

experimental curves are identical with the peak of each occurring at a nozzle pressure 

ratio of 2.97.  The nozzle performance code provides an almost exact prediction of the 

experimental results over the entire nozzle pressure ratio range with a maximum error of 

0.3% for nozzle configuration A1 and 0.35% for nozzle configuration A2.  As shown, the 

gross thrust prediction agrees with the experimental data to within the precision of the 

measurement system (approximately 0.5%). 
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Mason, Putnam, and Re [16] used the performance prediction code of Cline [21] 

to provide a comparison to their experimental data.  The theory of Cline [21] applies the 

two-dimensional inviscid Euler equations to the calculation of internal nozzle flow for 

converging-diverging nozzle geometries.  Shock effects are modeled using a procedure, 

termed “shock smearing”, which incorporates an explicit artificial viscosity.  Mason, 

Putnam, and Re [16] used the prediction code of Cline [21] to generate results over a 

NPR range of 3-9 for each nozzle configuration included in their analysis.

Figure 4.4 provides a comparison of the nozzle performance prediction code 

results to both the computational results of Cline [21] and the experimental results of 

Mason, Putnam and Re [16] for nozzle A1.  One can see that both the nozzle performance 

prediction code and Cline’s [21] prediction code provide results that compare extremely 

well with the experimental data over an NPR range of 3-9.    
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Figure 4.4 Cline’s [21] theory comparison for nozzle A1.

Figure 4.5 provides a comparison of the nozzle performance prediction code 

results to both the computational results of Cline [21] and the experimental results of 

Mason, Putnam and Re [16] for nozzle A2.  One can see that the nozzle performance 

prediction code provides results that compare extremely well with the experimental data 

over the entire NPR range while the computational results of Cline [21] continuously 

overpredict the experimental data over the NPR range of 3-9.    
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Figure 4.5 Cline’s [21] theory comparison for nozzle A2.

For nozzle geometry A1, the program determined the angularity coefficient, CA, 

to be 0.9999, the velocity coefficient, CV, to be 0.9878, and the discharge coefficient, Cd, 

to be 0.9896.

For nozzle geometry A2, the program determined the angularity coefficient, CA, 

to be 0.9999, the velocity coefficient, CV, to be 0.9869, and the discharge coefficient, Cd, 

to be 0.9888.
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4.1.2 Configurations B1, B2, and B3

The nozzle geometry of B1, B2, and B3 is shown in Figure 4.6. A table listing the 

design parameters for each configuration is provided in Table 4.2 as well.  Note that these 

geometries differ through their radii of curvature as well as both their primary and 

secondary nozzle half angles.

Figure 4.6 Nozzle geometry for configurations B1, B2 and B3 [16].
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Table 4.2 Nozzle design parameters for configurations B1, B2, and B3 [16].

Parameter B1 B2 B3 Parameter B1 B2 B3

Ae, cm2 50.06 50.06 50.06 lt, cm 5.78 5.78 6.27

At, cm2 27.81 27.81 27.81 l1, cm 5.54 4.74 5.32

Ae/At 1.8 1.8 1.8 l2, cm 0.24 1.04 0.96

he, cm 2.46 2.46 2.46 l3, cm 0.13 0.53 0.52

hi, cm 3.52 3.52 3.52 l4, cm 5.65 5.25 5.46

ht, cm 1.37 1.37 1.37 Md 2.08 2.08 2.08

h1, cm 1.41 1.57 1.54 NPRd 8.81 8.81 8.81

h2, cm 1.38 1.42 1.42 Rc, cm 0.68 2.74 2.74

l, cm 11.56 11.56 12.25 , degrees 20.84 22.33 20.42

le, cm 5.78 5.78 5.97 , degrees 10.85 11.24 10.85

The nozzle internal performance code was used to generate computational results 

for configurations B1, B2 and B3.  Figures 4.7, 4.8, and 4.9 provide a comparison of the 

computational code results and the experimental results of Mason, Putnam, and Re [16] 

for configuration B1, B2, and B3, respectively.  
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Figure 4.7 Experimental and computational gross thrust coefficient results for nozzle 

configuration B1.
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Figure 4.8 Experimental and computational gross thrust coefficient results for nozzle 

configuration B2.
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Figure 4.9 Experimental and computational gross thrust coefficient results for nozzle 

configuration B3.

As can be seen in Figures 4.7, 4.8, and 4.9, the shapes of the computational and 

experimental curves are identical with the peak of each occurring at a nozzle pressure 

ratio of 8.81.  The code results for nozzle pressure ratios above 4.5 predict the gross 

thrust coefficient to within 0.42% of the experimental data.  At nozzle pressure ratios 

below 4.5, however, the code underpredicts the experimental results by up to 12%.  

In their analysis, Mason, Putnam, and Re [16] state that the internal flow separates 

at lower nozzle pressure ratios for nozzles with high divergence angles as seen in the 

geometries of nozzles B1, B2, and B3.  This flow separation, a result of overexpansion, 
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causes an increase in the thrust efficiency as shown by the experimental results for an 

NPR range of 2-4.5.  Overexpansion occurs because the expansion ratio of the nozzle is 

too large for full expansion to be sustained for a given nozzle pressure ratio.  Thus, the 

nozzle adjusts to a smaller, more suitable expansion ratio causing an increase in thrust 

efficiency as shown in Figure 4.10.  The increase in thrust efficiency, depicted in Figure 

4.10, is the result of the natural inclination of an overexpanded fluid to reach a more 

effective balance between momentum and energy.  This results in a more efficient 

expansion and improved transfer of total pressure and temperature into momentum and 

thrust.

Figure 4.10 The effect of separation on thrust performance [20].
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Above a NPR of 4.5, separation does not occur and thus the nozzle was 

performing as predicted by the nozzle performance code.  As shown in Figures 4.7, 4.8, 

and 4.9, the gross thrust prediction agrees with the experimental data, until the point of 

separation, to within the precision of the measurement system (approximately 0.5%).  

Figure 4.11 provides a comparison of the nozzle performance prediction code 

results to both the computational results of Cline [21] and the experimental results of 

Mason, Putnam and Re [16] for nozzle B1.  One can see that both the nozzle performance 

prediction code and Cline’s [21] prediction code provide results that compare extremely 

well with the experimental data until the experimental results show signs of separation at 

a NPR of 4.5.  
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Figure 4.11 Cline’s [21] theory comparison for nozzle B1.



50

Figure 4.12 provides a comparison of the nozzle performance prediction code 

results to both the computational results of Cline [21] and the experimental results of 

Mason, Putnam and Re [16] for nozzle B2.  One can see that the nozzle performance 

prediction code provides results that compare extremely well with the experimental data 

until the experimental results show signs of separation at a NPR of 4.5.  The 

computational results of Cline [21], however, continuously overpredict the experimental 

data over the NPR range of 4.5-9.
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Figure 4.12 Cline’s [21] theory comparison for nozzle B2.
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Figure 4.13 provides a comparison of the nozzle performance prediction code 

results to both the computational results of Cline [21] and the experimental results of 

Mason, Putnam and Re [16] for nozzle B3.  One can see that both the nozzle performance 

prediction code and Cline’s [21] prediction code provide results that compare extremely 

well with the experimental data until the experimental results show signs of separation at 

a NPR of 4.5.  
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Figure 4.13 Cline’s [21] theory comparison for nozzle B3.

For nozzle geometry B1, the program determined the angularity coefficient, CA, 

to be 0.9932, the velocity coefficient, CV, to be 0.997, and the discharge coefficient, Cd, 

to be 0.9932.
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For nozzle geometry B2, the program determined the angularity coefficient, CA, 

to be 0.993, the velocity coefficient, CV, to be 0.9968, and the discharge coefficient, Cd, 

to be 0.9896.

For nozzle geometry B3, the program determined the angularity coefficient, CA, 

to be 0.993, the velocity coefficient, CV, to be 0.9968, and the discharge coefficient, Cd, 

to be 0.9896.

4.2 The Experiment of Berrier and Re [17]

Berrier and Re [17] conducted a test program investigating the effects of several 

geometric parameters on nozzle performance.  They examined several non-axisymmetric 

nozzles including a converging-diverging nozzle, a single ramp expansion nozzle and a 

wedge nozzle.  These three nozzle concepts were tested in the static test facility of the 

Langley 16 foot transonic tunnel and recorded internal performance data at nozzle 

pressure ratios up to 10.0.

The geometry of the nonaxisymmetric converging diverging nozzle used in their 

investigation is provided in Figure 4.14.  As shown, this nozzle has a throat area of 

4.3262 in2, an expansion ratio of 1.25, a divergence angle of 5.38°, and a design NPR of 

4.22.                           
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Figure 4.14 Nozzle geometry [20].

The nozzle performance code was used to obtain computational results for this 

nozzle geometry.  Figure 4.15 provides a comparison of the computational code results 

and the experimental results of Berrier and Re [17] for this nozzle.  
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Figure 4.15 Experimental and computational gross thrust coefficient results for the nozzle 

of Berrier and Re [17].

As can be seen Figure 4.15, the shapes of the computational and experimental 

curves are identical with the peak of each occurring at a nozzle pressure ratio of 4.25.  

The code results show excellent agreement with the experimental results of Berrier and 

Re [17] over the entire nozzle pressure range considered.   As shown, the gross thrust 

prediction agrees with the experimental data to within the precision of the measurement 

system (approximately 0.5%). 

Hunter [20] developed an analytical/numerical method, known as the nozzle 

performance analysis code (NPAC), to predict the thrust performance of non-
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axisymmetric two-dimensional convergent divergent nozzles.  The theory of NPAC 

includes losses due to thermodynamic nozzle performance effects, boundary layer 

development and skin friction losses, and effects due to angularity.  One-dimensional 

flow theory was used to model the thermodynamic nozzle performance effects due to 

both overexpansion and underexpansion while an approximate integral momentum 

method based on the Karman-Polhausen solution was used to calculate boundary layer 

development and skin friction losses.  

Figure 4.16 provides a comparison of the nozzle performance prediction code 

results to both the computational results of NPAC and the experimental results of Berrier 

and Re [17].  One can see that both the nozzle performance prediction code and NPAC 

provide results that compare extremely well with the experimental data over the entire 

NPR range.



56

1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

1.05

NPR

G
ro

ss
 T

hr
us

t 
C

oe
ff

ic
ie

nt
, 

C
fg

Hunters Theory [20]

Code Results
Experimental Data [17]

Figure 4.16 Hunter’s theory comparison for the nozzle of Berrier and Re [17].

For this nozzle geometry, the program determined the angularity coefficient, CA, 

to be 0.9979, the velocity coefficient, CV, to be 0.9932, and the discharge coefficient, Cd, 

to be 0.9894.
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4.3 The Experiment of Hunter [18]

This nozzle was used as part of a test program investigating passive shock –

boundary layer interaction control concepts.  The experimental results for this nozzle 

were generated by Hunter [18].  The nozzle geometry is provided in Figure 4.17.  As 

shown, this nozzle has a throat area of 4.3172 in2, an expansion ratio of 1.797, a 

divergence angle of 11.01°, and a design NPR of 8.78.  

Figure 4.17 Nozzle geometry [20].

The nozzle performance code was used to obtain computational results for this 

nozzle geometry.  Figure 4.18 provides a comparison of the computational code results 

and the experimental results of Hunter [18].
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Figure 4.18 Experimental and computational gross thrust coefficient results

for the nozzle of Hunter [18].

As can be seen in Figure 4.18, the shapes of the computational and experimental 

curves are identical with the peak of each occurring at a nozzle pressure ratio of 8.78.  

The code results for nozzle pressure ratios above 3.75 predict the gross thrust coefficient 

to within 0.3% of the experimental data.  At nozzle pressure ratios below 3.75, however, 

the code underpredicts the experimental results by up to 20%.  

In his analysis, Hunter [18] states that the experimental off-design internal 

pressure data for this nozzle configuration shows strong evidence of shock induced 

separation in the divergent section of the nozzle for an NPR range of 1.8 to 5.0.  As stated 
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before in section 4.1.2, this flow separation causes an increase in the thrust efficiency as 

depicted in Figure 4.18 over the NPR range of 1.25 to 4.  This explains the 

underprediction of the gross thrust coefficient over this NPR range.  Above an NPR of 5, 

the nozzle was shock free, and thus the code successfully predicts its performance.  As 

shown, the gross thrust prediction agrees with the experimental data, until the point of 

separation, to within the precision of the measurement system (approximately 0.5%).

Figure 4.19 provides a comparison of the nozzle performance prediction code 

results to both the computational results of NPAC and the experimental results of Hunter 

[20].  One can see that both the nozzle performance prediction code and NPAC provide 

results that compare extremely well with the experimental data until the experimental 

results show signs of separation at a NPR of 4.  
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Figure 4.19 Hunter’s theory comparison for the nozzle of Hunter [18].

For this nozzle geometry, the program determined the angularity coefficient, CA, 

to be 0.9932, the velocity coefficient, CV, to be 0.9969, and the discharge coefficient, Cd, 

to be 0.9898.
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4.4 The Experiment of Capone and Berrier [19]

This nozzle geometry was tested by Capone and Berrier [19] as part of a wind 

tunnel experiment on a 1/10 scale, twin engine F-18 prototype aircraft model.  The nozzle 

geometry is provided in Figure 4.20.  As shown, this nozzle has a sharp cornered throat12, 

a throat area of 2.5 in2, an expansion ratio of 1.15, a divergence angle of 1.54°, and a 

design NPR of 3.46. 

 It should be noted that this nozzle geometry consists of a cutback outside 

sidewall as well as an extended nozzle inter-fairing on the inside sidewall.  Thus, in 

actuality, this nozzle is not two-dimensional along its entire length.  The geometry shown 

in Figure 4.20 does not depict the sidewall variations.

Figure 4.20 Nozzle geometry [20].

                                                
12 For this nozzle geometry, the radius of curvature was entered as 0.00001 inches.
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The nozzle performance code was used to obtain computational results for this 

nozzle geometry.  Figure 4.21 provides a comparison of the computational code results 

and the experimental results of Capone and Berrier [19].  
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Figure 4.21 Experimental and computational gross thrust coefficient results

for the nozzle of Capone and Berrier [19].

As can be seen in Figure 4.21, the shapes of the computational and experimental 

curves are not identical with peak gross thrust coefficients occurring at different nozzle 

pressure ratios.  The computational curve peaks at an NPR of 3.5 while the experimental 

curve peaks at an NPR of 4.  The code results also overpredict the experimental results up 

to an NPR of 5 and underpredict the experimental results for NPRs above 5.  At nozzle 
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pressure ratios less than 5.0, the difference between the computational and experimental 

results is at most 1.2%.  For nozzle pressure ratios above 5.0, however, the difference is 

at most as 1.8%.  

Some of the discrepancies existing between the computational and experimental 

results are believed to be linked to the cutback outside sidewall geometry.  The outside 

sidewall cutback increases the effective nozzle expansion ratio thus causing the 

experimental peak gross thrust performance to occur at a higher NPR. 

Figure 4.22 provides a comparison of the nozzle performance prediction code 

results to both the computational results of NPAC and the experimental results of Capone 

and Berrier [19].  One can see that both the nozzle performance prediction code and 

NPAC provide results that compare well with the experimental data over the lower NPR 

range of 1-5.  At nozzle pressure ratios above 5, both computational methods 

underpredict the experimental data by up to 1.8%.  This is believed to be linked to the 

cutback outside sidewall geometry causing the nozzle to not be two-dimensional along its 

entire length



64

2 3 4 5 6 7 8 9 10
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

NPR

G
ro

ss
 T

hr
us

t 
C

oe
ff

ic
ie

nt
, 

C
fg

Hunters Theory [20]

Code Results

Experimental Data [19]

Figure 4.22 Hunter’s theory comparison for the nozzle of Capone and Berrier [19].

For this nozzle geometry, the program determined the angularity coefficient, CA, 

to be 0.9998, the velocity coefficient, CV, to be 0.9925, and the discharge coefficient, Cd, 

to be 0.9914.

For each nozzle considered in this study, the nozzle performance prediction code 

consistently performs as well as, and in some cases better than, the codes developed by 

Cline [21] and Hunter [20].  This confirms that this prediction code is a valid and useful 

tool for predicting the gross thrust performance for non-axisymmetric two dimensional 

converging diverging exhaust nozzles.
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5. Conclusions and Recommendations

This paper describes the creation of a computational code that can be used to 

predict the thrust performance characteristics of non-axisymmetric two-dimensional 

convergent-divergent exhaust nozzles.  The code includes the effects of friction, 

angularity, and expansion losses on the overall nozzle efficiency.  To demonstrate the 

validity of the nozzle performance prediction code, the generated computational results 

were compared to experimental data as well as the computational results of existing 

performance codes for a number of different nozzle geometries.  Important conclusions 

are as follows:

(1) The nozzle internal performance prediction code showed excellent agreement 

with experimental data in predicting the peak gross thrust coefficients for basic 

2D-CD nozzle geometries (7 out of the 8 cases to within 0.6 percent).    

(2) The computational results for low expansion ratio nozzles with shallow 

divergence angles showed excellent agreement with experimental data over the 

entire NPR range.  Differences between the predicted gross thrust efficiency and 

experimental data were generally less than 0.6%.

(3) For high expansion ratio nozzles with steep divergence angles, the nozzle internal 

performance prediction code results matched experimental data almost exactly for 

higher nozzle pressure ratios.  For the lower NPR regime, where the experimental 

data showed evidence of flow separation, the code results underpredicted the 

experimental by up to 10%.  
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(4) The nozzle performance prediction code cannot accurately predict nozzle thrust 

performance for nozzles that are not truly two-dimensional along their entire 

length because of cutback outside sidewalls.  

A few important points can be derived from these conclusions.  For one, this 

nozzle performance prediction model accurately predicts the gross thrust performance of 

non-axisymmetric two-dimensional converging diverging nozzles.  Secondly, while this 

model cannot account for separation effects, it is still applicable for underexpanded, 

externally overexpanded, and design NPR’s.  This prediction model can become

invaluable when used to interpret experimental data, to understand the fluid mechanics 

and loss effects represented in the prediction code, to provide insight into the 

fundamentals of nozzle thrust performance, or just to understand why a particular nozzle 

operates as it does. 

A couple of recommendations can be made as based on these conclusions.  For 

one, the current model cannot account for separation effects.  As such, it would be 

invaluable if a flow separation model could be added to the current code.  Secondly, this 

prediction model could easily be expanded to include other nozzle geometries, 

particularly axisymmetric converging diverging nozzles which are of interest to the Air 

Force Research Laboratory.  Expansion of this prediction model to include axisymmetric 

converging diverging nozzles would only require modification to the current method of 

characteristics subroutine (from two dimensions to three dimensions).  
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Appendix A: Preliminary Results

A number of researchers – Mason, Putnam, and Re [16], Berrier and Re [17], 

Hunter [18], and Cappone and Berrier [19] - have conducted experiments on a variety of 

nozzle geometries to understand the effect of various parameters on nozzle gross thrust 

coefficient.  The experimental results of these researchers are used to validate the theory 

of the nozzle internal performance code.

1.0 The Experiment of Mason, Putnam, and Re [16]

Mason, Putnam, and Re [16] conducted an experiment to determine the effect of 

throat contouring on nozzle internal performance.  They tested five non-axisymmetric 

converging-diverging nozzles in the static test facility of the Langley 16 foot transonic 

tunnel and recorded internal performance data at nozzle pressure ratios up to 9.0.

For their experiment, two CD nozzles, A1 and B1, were used as baseline nozzle 

geometries.  These baseline geometries were modified by increasing the throat radius of 

curvature while holding all other geometric parameters constant except for the primary 

nozzle half angle, , and the secondary nozzle half angle, .  The modified nozzle 

geometries are labeled as A2, B2, and B3.  The two baseline geometries as well as the 

modified geometries were tested and the data from each recorded.

1.1 Configuration A1 and A2

The nozzle geometry of A1 and A2 is shown in Figure A1. A table listing the 

design parameters for each configuration is provided in Table A1 as well.  Note that these 

two geometries differ through their radii of curvature and primary nozzle half angles.
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Figure A1 Nozzle geometry for configurations A1 and A2 [16].

Table A1 Nozzle design parameters for configurations A1 and A2 [16].
                                                                                                                                                        

Parameter A1 A2 Parameter A1 A2

Ae, cm2 30.29 30.29 lt, cm 5.78 5.78

At, cm2 27.81 27.81 l1, cm 5.54 4.74

Ae/At 1.09 1.09 l2, cm 0.24 1.04

he, cm 1.49 1.49 l3, cm 0.01 0.06

hi, cm 3.52 3.52 l4, cm 5.76 5.72

ht, cm 1.37 1.37 Md 1.35 1.35

h1, cm 1.41 1.57 NPRd 2.97 2.97

h2, cm 1.37 1.37 Rc, cm 0.68 2.74
l, cm 11.56 11.56 , degrees 20.84 22.33

le, cm 5.78 5.78 , degrees 1.21 1.21
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The nozzle performance code was used to generate computational results for both 

configuration A1 and A2.  Figures A2 and A3 provide a comparison of the computational 

code results and the experimental results of Mason, Putnam, and Re [16] for 

configuration A1 and A2, respectively.
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Figure A2 Experimental and computational gross thrust coefficient results for nozzle 

configuration A1.
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Figure A3 Experimental and computational gross thrust coefficient results for nozzle 

configuration A2.

One can see in each Figures A2 and A3 that the shapes of the computational and 

experimental curves are identical with the peak of each occurring at a nozzle pressure 

ratio of 2.97.  At nozzle pressure ratios above 2.97, the theory provides an almost exact 

prediction of the experimental results while at lower pressure ratios, the code 

overpredicts the experimental data by approximately 1% for A1 and 1.6% for A2.  
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1.2 Configurations B1, B2, and B3

The nozzle geometry of B1, B2, and B3 is shown in Figure A4. A table listing the 

design parameters for each configuration is provided in Table A2 as well.  Note that these 

geometries differ through their radii of curvature as well as both their primary and 

secondary nozzle half angles.

Figure A4 Nozzle geometry for configurations B1, B2 and B3 [16].
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Table A2 Nozzle design parameters for configurations B1, B2, and B3 [16].

Parameter B1 B2 B3 Parameter B1 B2 B3

Ae, cm2 50.06 50.06 50.06 lt, cm 5.78 5.78 6.27

At, cm2 27.81 27.81 27.81 l1, cm 5.54 4.74 5.32

Ae/At 1.8 1.8 1.8 l2, cm 0.24 1.04 0.96

he, cm 2.46 2.46 2.46 l3, cm 0.13 0.53 0.52

hi, cm 3.52 3.52 3.52 l4, cm 5.65 5.25 5.46

ht, cm 1.37 1.37 1.37 Md 2.08 2.08 2.08

h1, cm 1.41 1.57 1.54 NPRd 8.81 8.81 8.81

h2, cm 1.38 1.42 1.42 Rc, cm 0.68 2.74 2.74

l, cm 11.56 11.56 12.25 , degrees 20.84 22.33 20.42

le, cm 5.78 5.78 5.97 , degrees 10.85 11.24 10.85

The nozzle internal performance code was used to generate computational results 

for configurations B1, B2 and B3.  Figures A5, A6, and A7 provide a comparison of the 

computational code results and the experimental results of Mason, Putnam, and Re [16] 

for configuration B1, B2, and B3, respectively.  
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Figure A5 Experimental and computational gross thrust coefficient results for nozzle 

configuration B1.
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Figure A6 Experimental and computational gross thrust coefficient results for nozzle 

configuration B2.
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Figure A7 Experimental and computational gross thrust coefficient results for nozzle 

configuration B3.

As can be seen in each figure, the shapes of the computational and experimental 

curves are identical with the peak of each occurring at a nozzle pressure ratio of 8.81.  

The code results for nozzle pressure ratios above 4.0 predict the gross thrust coefficient to 

within 0.8% of the experimental data.  At nozzle pressure ratios below 4.0, however, the 

code underpredicts the experimental results by up to 10%.  

   In their analysis, Mason, Putnam, and Re [16] state that the internal flow 

separates at lower nozzle pressure ratios for nozzles with high divergence angles as seen 

in the geometries of nozzles B1, B2, and B3.  This flow separation, a result of 
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overexpansion, causes an increase in the thrust efficiency as shown by the experimental 

results for an NPR range of 2-4.  Above a NPR of 4, separation does not occur and thus 

the nozzle was performing as predicted by the nozzle performance code.

2.0 The Experiment of Berrier and Re [17]

Berrier and Re [17] conducted a test program investigating the effects of several 

geometric parameters on nozzle performance.  They examined several non-axisymmetric 

nozzles including a converging-diverging nozzle, a single ramp expansion nozzle and a 

wedge nozzle.  These three nozzle concepts were tested in the static test facility of the 

Langley 16 foot transonic tunnel and recorded internal performance data at nozzle 

pressure ratios up to 10.0.

The geometry of the nonaxisymmetric converging diverging used in their 

investigation is provided in Figure A8.  As shown, this nozzle has a throat area of 4.3262 

in2, an expansion ratio of 1.25, a divergence angle of 5.38°, and a design NPR of 4.22. 
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Figure A8: Nozzle geometry [20].

The nozzle performance code was used to obtain computational results for this 

nozzle geometry.  Figure A9 provides a comparison of the computational code results and 

the experimental results of Berrier and Re [17] for this nozzle.  
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Figure A9 Experimental and computational gross thrust coefficient results for the nozzle 

of Berrier and Re [17].

As can be seen Figure A9, the shapes of the computational and experimental 

curves are identical with the peak of each occurring at a nozzle pressure ratio of 4.25.  

The code results show excellent agreement with the experimental results of Berrier and 

Re [17] over the entire nozzle pressure range shown.   
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3.0 The Experiment of Hunter [18]

This nozzle was used as part of a test program investigating passive shock –

boundary layer interaction control concepts.  The experimental results for this nozzle 

were generated by Hunter [18].  The nozzle geometry is provided in Figure A10.  As 

shown, this nozzle has a throat area of 4.3172 in2, an expansion ratio of 1.797, a 

divergence angle of 11.01°, and a design NPR of 8.78.  

Figure A10 Nozzle geometry [20].

The nozzle performance code was used to obtain computational results for this 

nozzle geometry.  Figure A11 provides a comparison of the computational code results 

and the experimental results of Hunter [18].
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Figure A11 Experimental and computational gross thrust coefficient results

for the nozzle of Hunter [18].

As can be seen in Figure A11, the shapes of the computational and experimental 

curves are identical with the peak of each occurring at a nozzle pressure ratio of 8.78.  

The code results for nozzle pressure ratios above 3.75 predict the gross thrust coefficient 

to within 0.8% of the experimental data.  At nozzle pressure ratios below 3.75, however, 

the code underpredicts the experimental results by up to 10%.  

In his analysis, Hunter [20] states that the experimental off-design internal 

pressure data for this nozzle configuration shows strong evidence of shock induced 

separation in the divergent section of the nozzle for an NPR range of 1.8 to 5.0.  As stated 
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before, this flow separation causes an increase in the thrust efficiency as depicted in 

Figure A11 over the NPR range of 1.25 to 4.  This explains the underprediction of the 

gross thrust coefficient over this NPR range.  Above an NPR of 5, the nozzle was shock 

free, and thus the code successfully predicts its performance.

4.0 The Experiment of Capone and Berrier [19]

This nozzle geometry was tested by Capone and Berrier [19] as part of a wind 

tunnel experiment on a 1/10 scale, twin engine F-18 prototype aircraft model.  The nozzle 

geometry is provided in Figure A12.  As shown, this nozzle has a throat area of 2.5 in2, 

an expansion ratio of 1.15, a divergence angle of 1.54°, and a design NPR of 3.46. 

 It should be noted that this nozzle geometry consists of a cutback outside

sidewall as well as an extended nozzle inter-fairing on the inside sidewall.  Thus, in 

actuality, this nozzle is not two-dimensional along its entire length.  The geometry shown 

in Figure A12 does not depict the sidewall variations.

Figure A12 Nozzle geometry [20].
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The nozzle performance code was used to obtain computational results for this 

nozzle geometry.  Figure A13 provides a comparison of the computational code results 

and the experimental results of Capone and Berrier [19].  
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Figure A13 Experimental and computational gross thrust coefficient results

for the nozzle of Capone and Berrier [19].

As can be seen in Figure A13, the shapes of the computational and experimental 

curves are not identical with peak gross thrust coefficients occurring at different nozzle 

pressure ratios.  The computational curve peaks at an NPR of 3.5 while the experimental 

curve peaks at an NPR of 4.  The code results also overpredict the experimental results up 

to an NPR of 5 and underpredict the experimental results for NPRs above 5.  At nozzle 
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pressure ratios less than 5.0, the difference between the computational and experimental 

results is at most 2.6%.  For nozzle pressure ratios above 5.0, however, the difference is 

at most as 1.3%.  

Some of the discrepancies existing between the computational and experimental 

results are believed to be linked to the cutback outside sidewall geometry.  The outside 

sidewall cutback increases the effective nozzle expansion ratio thus causing the 

experimental peak gross thrust performance to occur at a higher NPR. 

5.0 Code Adjustments

As mentioned before, this code was designed for the Air Force Research 

Laboratory Propulsion Directorate for the purpose of modeling the nozzle performance of 

aircraft engines.  As such, it is imperative that the code results match the experimental 

results as well as possible for lower the NPR regime.  One can see in the figures of 

sections 1.0 - 4.0, that the code continuously overpredicts the nozzle performance. 

It was believed that the performance overprediction was due to the omission of 

the inviscid discharge coefficient from the analysis.  In theory, including an inviscid 

discharge coefficient in the determination of the overall discharge coefficient will lower 

the performance results over the entire NPR range.  As mentioned before, Hall’s [6] 

relation for the inviscid discharge coefficient given in Equation (3.10) was not used 

because the expression diverges for nozzle radius ratios, 
R

R
t

c

, greater than unity and 

many of the nozzles considered in this study have nozzle radius ratios greater than one. 

To solve this problem, inviscid discharge coefficient data was generated for 

nozzle radius ratios of 0.05 to 0.95.  The median value of 0.9915 was selected for the 
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inviscid discharge coefficient and inserted into the nozzle performance code as a constant 

for any radius ratio value.  Following the adjustments made to the nozzle performance 

code, new computational results were generated for each nozzle considered in this study.  

The results are provided in Figures A14 –A21.

Figures A14 and A15 provide the computational results, before and after the code 

adjustments, for nozzles A1 and A2 respectively.  One can see that the computational 

code results with the inviscid discharge coefficient approximation predict the 

experimental results with error less than 0.3% over the entire NPR range for both nozzles.  

The lower NPR range computational results offer a much better comparison to the 

experimental data when the code includes the inviscid discharge coefficient correction.
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Figure A14 Experimental and adjusted computational gross thrust coefficient results for 

nozzle configuration A1.
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Figure A15 Experimental and adjusted computational gross thrust coefficient results for 

nozzle configuration A2.

Figures A16, A17 and A18 provide the computational results, before and after the 

code adjustments, for nozzles B1, B2 and B3 respectively.  One can see that the 

computational code results with the inviscid discharge coefficient approximation predict 

the experimental results with error less than 0.4% over the higher NPR range for each 

nozzle.  At nozzle pressure ratios below 4.0, however, the code still underpredicts the 

experimental results by up to 10%.  This is due to the separation effects seen in the 

experimental data at lower nozzle pressure ratios.  
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Figure A16 Experimental and adjusted computational gross thrust coefficient results for 

nozzle configuration B1.
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Figure A17 Experimental and adjusted computational gross thrust coefficient results for 

nozzle configuration B2.
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Figure A18 Experimental and adjusted computational gross thrust coefficient results for 

nozzle configuration B3.

Figure A19 provides the computational results, before and after the code 

adjustments, for the nozzle geometry of Berrier and Re [17].  One can see that the 

computational code results with the inviscid discharge coefficient approximation predict 

the experimental results with error less than 0.4% over the entire NPR range.  The lower 

NPR range computational results offer a much better comparison to the experimental data 

when the code includes the inviscid discharge coefficient correction.
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Figure A19 Experimental and adjusted computational gross thrust coefficient results

for the nozzle of Berrier and Re [17].

Figure A20 provides the computational results, before and after the code 

adjustments, for the nozzle geometry of Hunter [18].  One can see that the computational 

code results with the inviscid discharge coefficient approximation predict the

experimental results with error less than 0.4% over the higher NPR range.  At nozzle 

pressure ratios below 4.0, however, the code still underpredicts the experimental results 

by up to 10%.  This is due to the separation effects seen in the experimental data at lower 

nozzle pressure ratios.  
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Figure A20 Experimental and adjusted computational gross thrust coefficient results

for the nozzle of Hunter [18].

Figure A21 provides the computational results, before and after the code 

adjustments, for the nozzle geometry of Capone and Berrier [19].  One can see that the 

computational code results with the inviscid discharge coefficient approximation predict 

the experimental results with error less than 1.3% for a nozzle pressure ratio range of 1-5.  

and less than 2% for nozzle pressure ratios above 5.0.  The lower NPR range 

computational results offer a much better comparison to the experimental data when the 

code includes the inviscid discharge coefficient correction.
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Figure A21 Experimental and adjusted computational gross thrust coefficient results

for the nozzle of Capone and Berrier [19].

As one can see in each of the figures of this section, the inclusion of a constant 

inviscid discharge coefficient improves the computational results for each of the nozzles 

considered in this analysis.  The most important result of this modification is the 

improvement of the computational results for the lower NPR regime.  The performance 

prediction was improved over the lower NPR range for each case except for those where 

the experimental data shows signs of separation effects in the nozzle. 
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It is very important to point out that the assumption of a constant inviscid 

discharge coefficient of 0.9915 provided improved results for a wide range of nozzle 

radius ratios.  Table A3 provides the radius ratio for each of the nozzle configurations 

considered in this study.  As can be seen in Table A3, the radius ratio varies from values 

less than one to values much greater than one.  Whereas Hall’s [6] representation for 

inviscid discharge coefficient was only valid for radius ratios less than one, the 

assumption of a constant inviscid discharge coefficient equal to 0.9915 provided valid 

results for all radius ratios considered.   

Table A3 Radius ratio data for each nozzle configuration.

Nozzle Configuration
Radius Ratio

Rt/Rc

A1 2.831
A2 0.7026
B1 2.831
B2 0.7026
B3 0.7026

Hunter Case 2 1.2158
Hunter Case 3 1.216

Hunter Case 4 14680
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Appendix B: Method of Characteristics Comparison

Gas Dynamics [15] example 15.1 – Uniform radial flow at Mach 2.0 enters a two-

dimensional diverging channel with straight walls.  Compute the variation of Mach 

number in this radial flow field, assuming isentropic, steady flow.  The walls are inclined 

at a total angle of 12°.

Table B1 provides the results of the nozzle performance prediction code’s MOC 

subroutine and Table B2 provides the results given in Gas Dynamics [15].

Table B1 MOC subroutine output.

Number
Mach 

Number, M


degrees


degrees


 degrees C1 C2
+

 degrees
-

 degrees

1 2.000 30.000 26.380 6 32.380 20.380 36.000 -24.000

2 2.000 30.000 26.380 4 30.380 22.380 34.000 -26.000

3 2.000 30.000 26.380 2 28.380 24.380 32.000 -28.000

4 2.000 30.000 26.380 0 26.380 26.380 30.000 -30.000

5 2.036 29.409 27.380 5 32.380 22.380 34.409 -24.409

6 2.036 29.409 27.380 3 30.380 24.380 32.409 -26.409

7 2.036 29.409 27.380 1 28.380 26.380 30.409 -28.409

8 2.073 28.837 28.380 6 34.380 22.380 34.837 -22.837

9 2.073 28.837 28.380 4 32.380 24.380 32.837 -24.837

10 2.073 28.837 28.380 2 30.380 26.380 30.837 -26.837

11 2.073 28.837 28.380 0 28.380 28.380 28.837 -28.837

12 2.111 28.282 29.380 5 34.380 24.380 33.282 -23.282

13 2.111 28.282 29.380 3 32.380 26.380 31.282 -25.282

14 2.111 28.282 29.380 1 30.380 28.380 29.282 -27.282

15 2.148 27.742 30.380 6 36.380 24.380 33.742 -21.742

16 2.148 27.742 30.380 4 34.380 26.380 31.742 -23.742

17 2.148 27.742 30.380 2 32.380 28.380 29.742 -25.742

18 2.148 27.742 30.380 0 30.380 30.380 27.742 -27.742

19 2.186 27.217 31.380 5 36.380 26.380 32.217 -22.217

20 2.186 27.217 31.380 3 34.380 28.380 30.217 -24.217

21 2.186 27.217 31.380 1 32.380 30.380 28.217 -26.217

22 2.225 26.707 32.380 6 38.380 26.380 32.707 -20.707

23 2.225 26.707 32.380 4 36.380 28.380 30.707 -22.707

24 2.225 26.707 32.380 2 34.380 30.380 28.707 -24.707

25 2.225 26.707 32.380 0 32.380 32.380 26.707 -26.707

26 2.264 26.210 33.380 5 38.380 28.380 31.210 -21.210

27 2.264 26.210 33.380 3 36.380 30.380 29.210 -23.210

28 2.264 26.210 33.380 1 34.380 32.380 27.210 -25.210

29 2.304 25.725 34.380 6 40.380 28.380 31.725 -19.725

30 2.304 25.725 34.380 4 38.380 30.380 29.725 -21.725

31 2.304 25.725 34.380 2 36.380 32.380 27.725 -23.725

32 2.304 25.725 34.380 0 34.380 34.380 25.725 -25.725
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Table B2 Gas Dynamics MOC textbook results [15].

Number
Mach

 Number, M


degrees


 degrees


 degrees C1 C2
+

degrees
-

degrees

1 2.000 30.000 26.380 6 32.380 20.380 36.000 -24.000

2 2.000 30.000 26.380 4 30.380 22.380 34.000 -26.000

3 2.000 30.000 26.380 2 28.380 24.380 32.000 -28.000

4 2.000 30.000 26.380 0 26.380 26.380 30.000 -30.000

5 2.040 29.350 27.380 5 32.380 22.380 34.350 -24.350

6 2.040 29.350 27.380 3 30.380 24.380 32.350 -26.350

7 2.040 29.350 27.380 1 28.380 26.380 30.350 -28.350

8 2.070 28.890 28.380 6 34.380 22.380 34.890 -22.890

9 2.070 28.890 28.380 4 32.380 24.380 32.890 -24.890

10 2.070 28.890 28.380 2 30.380 26.380 30.890 -26.890

11 2.070 28.890 28.380 0 28.380 28.380 28.890 -28.890

12 2.110 28.290 29.380 5 34.380 24.380 33.290 -23.290

13 2.110 28.290 29.380 3 32.380 26.380 31.290 -25.290

14 2.110 28.290 29.380 1 30.380 28.380 29.290 -27.290

15 2.150 27.720 30.380 6 36.380 24.380 33.720 -21.720

16 2.150 27.720 30.380 4 34.380 26.380 31.720 -23.720

17 2.150 27.720 30.380 2 32.380 28.380 29.720 -25.720

18 2.150 27.720 30.380 0 30.380 30.380 27.720 -27.720

19 2.190 27.170 31.380 5 36.380 26.380 32.170 -22.170

20 2.190 27.170 31.380 3 34.380 28.380 30.170 -24.170

21 2.190 27.170 31.380 1 32.380 30.380 28.170 -26.170

22 2.230 26.640 32.380 6 38.380 26.380 32.640 -20.640

23 2.230 26.640 32.380 4 36.380 28.380 30.640 -22.640

24 2.230 26.640 32.380 2 34.380 30.380 28.640 -24.640

25 2.230 26.640 32.380 0 32.380 32.380 26.640 -26.640

26 2.260 26.260 33.380 5 38.380 28.380 31.260 -21.260

27 2.260 26.260 33.380 3 36.380 30.380 29.260 -23.260

28 2.260 26.260 33.380 1 34.380 32.380 27.260 -25.260

29 2.300 25.770 34.380 6 40.380 28.380 31.770 -19.770

30 2.300 25.770 34.380 4 38.380 30.380 29.770 -21.770

31 2.300 25.770 34.380 2 36.380 32.380 27.770 -23.770

32 2.300 25.770 34.380 0 34.380 24.380 25.770 -25.770

One can see, from a comparison of Table B1 with Table B2 that the method of 

characteristics subroutine results compare extremely well with those results provided in 

Gas Dynamics [15].
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Appendix C: Program User’s Guide

An analytical prediction code has been developed to determine the thrust 

performance of non-axisymmetric two-dimensional converging diverging nozzles.  The 

program calculates nozzle losses due to viscous effects, expansion, and angularity based 

on a number of user defined parameters.  

1. User Inputs

To begin, the user is given the option of defining the nozzle by (1) its lengths -

primary nozzle length and secondary nozzle length - secondary nozzle half angle, and 

radius of curvature or (2) defining the nozzle contour for various streamwise locations13.  

The second option is chosen if the nozzle can not be defined by a constant secondary 

nozzle half angle because of angle variance due to the contour of the secondary nozzle.

1.1 Nozzle Geometry

This program was designed to analyze nozzles characterized by either sharp 

cornered or smooth contoured throats.  Figure C1 depicts the nozzle geometry for which 

this analysis is valid.  In this illustration, station 7 represents the nozzle entrance, station 

8 the nozzle throat, and station 9 the nozzle exit.  Important geometrical inputs are the 

nozzle throat and exit areas, primary and secondary nozzle lengths, radius of curvature, 

and secondary nozzle half angle or nozzle contour (for angle variance).

                                                
13 This routine works best when the user inputs points that are equally spaced, along the streamwise 
direction, from the nozzle entrance to the nozzle exit.  The user must enter at least 11 points, but may enter 
more if he/she chooses.
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Figure C1 Non-axisymmetric two-dimensional converging diverging nozzle geometry

Nozzle Cross Section

As stated before, this program is used to analyze the gross thrust performance of 

non-axisymmetric two-dimensional converging diverging nozzles.  As such, the user has 

the option of defining a nozzle of rectangular or square cross section.  If the rectangular 

option is selected, the user must define the length of the rectangular cross section.

Radius of Curvature

If the user chooses nozzle geometry definition (1), they have the option of 

defining the radius of curvature, if it is known.   If the user chooses to analyze a nozzle 

with a sharp cornered throat, the radius of curvature is simply defined to be virtually zero 

(~0.00001).  If the user does not know the radius of curvature, they can use a subprogram 
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that will determine the radius of curvature for them.  To use this routine, the user must 

enter the nozzle contour at various streamwise locations14.  The program fits a 

polynomial, y f x ( ) , to these points and calculates the curvature using Equation (1).

                                        
 

 ( )
' ' ( )

( ' ( ))
x

f x

f x


1 2
3

2
                                                (1)

where κ is the curvature, f’(x) is the first derivative of the polynomial, f’’(x) is the second 

derivative of the polynomial, and x is the streamwise location of the nozzle throat.  The 

radius of curvature is then determined using the Equation (2). 

                                                                Rc 
1


                                                            (2)

where Rc is the radius of curvature and κ is the curvature.

If the user chooses nozzle geometry definition (2), the program will automatically 

calculate the radius of curvature using the same method as the radius of curvature 

subroutine for nozzle geometry definition (1). 

1.2 Gas Properties

After the nozzle geometry has been defined, the program user is asked to describe 

the gas at various locations throughout the nozzle.  Specifically, the user is asked for the 

molecular weight of the gas as well as the atmospheric temperature and pressure. A file 

has been set up entitled gas_description_Kelvin.m or gas_description_Rankine.m 

depending on the type of units being used.  This file includes a temperature range, 

corresponding specific heat ratios (gammas), and corresponding dynamic viscosities for 

                                                
14 This routine works best when the user inputs points that are equally spaced, along the streamwise 
direction, from the nozzle entrance to the nozzle exit.  The user must enter at least 11 points, but may enter 
more if he/she chooses.
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the gas in question. The current file is set up for air.  The user can modify this file if the 

gas in question is not air.

1.3 Number of Nodes for MOC   

Here the user enters the number of equally spaced nodes to be used for the 

method of characteristics. Numbers from 2 and up can be chosen, but as the number gets 

larger than 20, the computation time increases drastically. I have typically used a 10 node 

analysis.

1.4 Throat Mach Number   

The user is also prompted to enter the Mach number at the nozzle throat.  If the 

Mach number at the throat is unity, it should be entered as 1.01.  This is because the 

program uses the method of characteristics, which is based on supersonic flow, to 

determine the exit angle variance. 
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